Highly Efficient Nanofibrous Membranes based on Hierarchical Nanofiber Structure

Benjamin S. Hsiao and Benjamin Chu Departments of Chemistry Stony Brook University

2010 Advanced Energy Conference

Conventional water filtration membranes (since 70's)

http://www.dow.com

NF 70 - 400 0.22 - 0.66 (e.g. 2000 ppm MgS0 70 - 400 (Brackish Water) 0.03 - 0.40	UF	15 – 150	3 – 100 (pure water)
70 – 400 (Brackish Water) 0.03 – 0.40	NF	70 - 400	0.22 - 0.66 (e.g. 2000 ppm MgSO ₄)
600 – 1200 (Seawater) (Brackish water : 1000 – 5000 ppm sa Seawater : 35,000 ppm of salts)	RO	70 – 400 (Brackish Water) 600 – 1200 (Seawater)	0.03 – 0.40 (Brackish water : 1000 – 5000 ppm salts; Seawater : 35,000 ppm of salts)

New Concept: Nanofibrous Membranes with Hierarchical Fiber Structure ~10 µm diameter fiber

20 µm

Fiber diameter has little effect on porosity

• Electro-spinning Conditions

- Flow rate : 20 μ l/min
- Electric Field Strength : 1.0 ~ 2.5 kV/cm
- Porosity Measurements

- Porosity (%) = (1-
$$\rho_{es}/\rho_{p}$$
) x 100
(ρ_{es} : electrospun membrane density
(ρ_{p} : polymer density

✓ porosity change (3%) <<
 fiber diameter change by a factor of > 8

Thickness of nanofibrous scaffold and porosity

= 1 – (mat density)/(density of fiber)

Essentially little effect of fiber diameter on porosity.

Water flows only into empty space - Minimum flux reduction by thickness increase

Low hydraulic resistance for nanofibrous support

✓ Low hydraulic resistance :

Only 14% flux decrease by a factor of 5 in the thickness increase ✓ Pure water fluxes for PAN e-spun membrane (5~6 x 10³ l/m²h) is 10 times higher than commercial PAN UF membranes (100 ~ 800 l/m²h)

Relationship between pore size and fiber diameter

- ✓ All solid points were obtained from Stonybrook Group, hollow points were from literatures
- ✓ Pore size is about 3 times of the fiber diameter

Lin K, Chua KN, Christopherson GT, Lim S, Mao, HQ. *Polymer* 2007; 48:6384-6394
Jin HJ, Fridrikh SV et al. *Biomacromolecules* 2002; 3: 1233-1239
Ryu YJ, Kim HY et al. *European Polymer Journal* 2003;39: 1883–1889

Stony Brook's precision multi-jet electrospinning process to fabricate nanofibrous membranes for liquid filtration

- Instrumentation scalable to large production
- Controlled environmental conditions (e.g. humidity, temperature) to fabricate high quality nanofibrous scaffolds
- Platform scaffolds suitable for MF, UF, NF, RO and FO

Microfiltration to eliminate water borne diseases

Water without bacteria

- Pore size ~ 300 nm; pore volume ~ 85%
- Mechanically strong with nano-trusses

Microfiltration performance

Name	Total thickness (µm)	Ave. flux (1000L/m²h)	Max. pore size (µm)	Ave. pore size (µm)
	130	16.6	2.5	0.8
E-spun PES/Coffee Filter Paper	140	13.4	1.7	0.6
	155	11.7	1.2	0.4
E-spun PVA/nonwoven PET	160	5.5	0.6	0.2
Millipore GS 0.22 µm	175	0.39	0.6	0.2
Millipore RA 1.20 µm	145	2.0	4.4	1.5

* All the above test were processed on the dead-end flow system at 2.28 psi by gravity.

Demonstrated chemical scheme to prepare cellulose nanofiber scaffold (d~ 5nm)

High-Resolution TEM Images of Ultra-Fine Cellulose Nanofiber

mhy-3_003.tif ventricle Print Mag: 21500x @ 51 mm 14:34 10/16/08

500 nm

HV=80kV Direct Mag: 49000x X:-359.112 Y: 12.7594 Stony Brook

Stony Brook coating process to cast ultra-fine cellulose nanofiber barrier layer

Process :

- 1. Soak nanofibrous scaffold in HCI solution (pH = 2)
- 2. Drain out excess solution
- 3. Cast cellulose nanofiber solution (0.05-0.10 wt%) with knife coating system
- 4. Dry in 100 °C contact oven

High-Flux Nanofibrous Membranes for UF Applications

High Resolution SEM Image of Cellulose Nanofiber Barrier Layer

Mean pore size about 20 nm

UF performance of cellulose-based TFNC membrane for oil and water separation

Filtration conditions

- Feed solution: soybean oil -1350 ppm, DC 193 surfactant 150 ppm
- Cross-flow mode at 30 psi, filter area : 65.15 cm², temperature ~ 35 °C
- \bullet The thickness of barrier layer: ~ 0.1 μm

Advantages of high-flux TFNC membranes

What a substantial increase in efficiency will do?

- High flux membrane is analog to faster CPU
- TFNC membrane can be a platform technology to MF, UF, NF, and RO
- Enabling new system design with small foot print, less component and less energy consumption
 - Much more cost effective
 - Low pressure systems
 - Manual operation
- Broad range of other applications, including (osmotic) energy generation

Nanofibrous Membranes for Ethanol-Water Separation via Pervaporation Method

Benjamin S. Hsiao, SBU Benjamin Chu, SBU Devinder Mahajan, SBU & BNL

Objectives:

- A unique class of high-flux nanofibrous membrane has been demonstrated for water purification
- The new membrane format will be tested for energy efficient pervaporation of separating ethanol and water

Introduction: Ethanol consumption is growing

2007.

Approach: Energy Saving Refined Process

- Bio-ethanol as fuel level should be dehydrated.
- Refined process is needed due to azeotrop in water-ethanol mixture.

- Higher energy waste in production
- Exhaust emission problem

Center for BioEnergy Research and Development

CBERD

A Multi-University/Industry Initiative Spanning North America

	Components	Boiling A Point e (°C)	zeotrop Composition of Azeotrope B.P (°C) (wt%)
	Water 🦿	100.0	78.15 4.4
	Ethanol 5	78.3	95.6
10	90 95 99.5 	Energy needed (Kcal/kg – EtOH)	Process
		Total 2310 1520 790	Conventional "dual" distillation Conventional distillation Conventional azeotropic distillation
6.4 ¹ 1		1390 340 Total 1730	Distillation pervaporation $\binom{+}{(Nafion-(CH_3)_3NH}$
 		1220 60 Total 1280	Distillation Pervaporation (GFT Membrane)
		101	Pervaporation (α>5000)

K.R. ,Lee, J.Y. Lai, "Pervaporation", .J. of the Chinese Institute of Chemical Engineers,1998

State-of-the-art of Membranes for Pervaporation

Polymeric Membranes

- Lower cost
- Simpler processing
- Good mechanical stability
- Lower selectivity and permeating flux

Inorganic Membranes:

- Higher selectivity and permeating flux
- Good thermal and chemical stability
- Higher cost
- Difficult to process for large scale plants

P.D. Chapman , J. Membr. Sci., vol. 218, pp. 5-37, 2008.

Current Status of Pervaporation Membranes

X. Qiao, J. Membr. Sci., 2005

PVA based mixed matrix membranes

- Based on hydrophilic poly vinyl alcohol (PVA)
- (PVA) selective layer on polyacrylonitrile (PAN) porous membrane and non-woven fabric
- Annealed/cross-linked structure

CBEI

B. Soydas, Middle East Technical Univ., Ankara, Turkey, 2009

Type A zeolite membrane

- Zeolites are crystalline micro porous aluminosilicates
- A pore flow type membrane (adsorption)
- Pore diameter ~ 0.4 nm, H₂O = 0.296 nm, EtOH = 0.43

Pervaporation Instrumentation

Pervaporation = Permeate + Evaporation

Custom cell by Sulzer Chemtech

Driving Force:

Pressure difference between feed and product, and difference of chemical potential to the membrane.

Pervaporation unit performance

Pressurized feed tank (1 gallon) Test cell (Diameter 3.15 inch) Recycling pump (34 L/hr) Vacuum pump (2×10⁻³mbar)

Temperature (20°C~90°C)

Anticipated Results

- Understand the structure/property relationships in pervaporation membranes
- Control and design appropriate membrane structure
- Higher flux (more energy efficient) pervaporation performance

Chu-Hsiao Group

National Science Foundation